NOAA Technical Memorandum ERL GLERL-41

DOCUMENTATION of SED--A SEDIMENT/WATER COLUMN CONTAMINANT MODEL

Gregory A. Lang

Great Lakes Environmental Research Laboratory
Steven C. Chapra
Texas A\&M University
Department of Civil Engineering
College Station, Texas

Great Lakes Environmental Research Laboratory Ann Arbor, Michigan August 1982

UNITED STATES
DEPARTMENT OF COMMERCE
Maicolm Baldrige.
Secretary

NATIONAL OCEANIC AND	Environmental Research
ATMOSPHERIC ADMINISTRATION	Laboratories
John V. Byrne.	George H. Ludwig
Administrator	Director

NOTICE

Mention of a commerical company or product does not constitute an endorsement by NOAA Environmental Research Laboratories. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.

The authors wish to add this information to NOAA Technical Memorandum ERL GLERL-41, Documentation of SED--ASediment/Water Column Contaminant Model, August 1982, by Gregory A. Lang and Steven C. Chapra.

The FORTRAN program listed in Appendix B was written for a CDC Cyber 750 FORTRAN Extended Version 4.8 compiler. Successful application of this code to other compilers is not guaranteed.

In addition, the authors wish to reference the two software packages used in the program. The first package is the IMSL Library, Edition 9. It is a product of International Mathematical and Statistical Libraries, Incorporated, NBC Building, 7500 Bellaire Blvd., Houston, Texas. The subroutine ZSYSTM, called on page 41 , Appendix B, was used from this package to simultaneously solve a set of non-linear equations. ZSYSTM has subsequently been replaced in the IMSL Library by the subroutine ZSPOW. The second software package is the DISSPLA version 8.2 software system. It is a product of the Integrated Software Systems Corporation (ISSCO), 4186 Sorrento Valley Blvd., San Diego, California. The subroutines called on pages 46 and 47 , Appendix B, (excluding the subroutine RMAX) are all part of DISSPLA and were used to generate the plots in figures 4 and 5 .

CONTENTS

Page
Abstract 1

1. INTRODUCTION 1
2. MODEL DEVELOPMENT 1
2.1 Contaminant Budget 2
2.1.1 Water Column Balance 3
2.1.1.1 Organic Pool 5
2.1.1.2 Inorganic Pool 6
2.1.1.3 Liquid Pool 6
2.1.1.4 Total Contaminant 7
2.1.2 Mixed Sediment Balance 11
2.1.2.1 Organic Pool 11
2.1.2.2 Inorganic Pool 12
2.1.2.3 Liquid Pool 12
2.1.2.4 Total Contaminant 13
2.1.3 Deep Sediment Balance 18
2.2 Solids Budget 19
2.2.1 Inorganic Solids 19
2.2.2 Organic Solids 20
3. MODEL USE 23
4. REFERENCES 30
Appendix A. --EXAMPLE OF MODEL OUTPUT FOR ${ }^{239} \mathrm{Pu}$ SIMULATION IN LAKE MICHIGAN 31
Appendix B.--LISTING OF SED 37

FIGURES

Page

1. Spatial segmentation scheme used in SED. 2
2. Flow chart representing the pathways of SED. 3
3. Overview of contaminant budget. 4
4. Loading rate of 239 Pu to Lake Michigan and simulated total concentration of 239 Pu in water column. 29
5. Simulated total, pore water, and solids concentration of ${ }^{239} \mathrm{Pu}$ in Lake Michigan sediments. 29

TABLES

Page

1. Lake parameters used in the simulation of ${ }^{239} \mathrm{Pu}$ in Lake Michigan. 25
2. Contaminant parameters used in the simulation of ${ }^{239} \mathrm{Pu}$ in Lake Michigan. 27
3. Model parameters used in the simulation of ${ }^{239} \mathrm{Pu}$ in Lake Michigan. 28

A SEDIMENT/WATER COLUMN CONTAMINANT MODEL*

Gregory A. Lang and Steven C. Chapra

Presented is documentation of a mathematical model developed to simulate the contaminant level in the sediments and overlying water column of a well-mfxed lake. The contaminant is segmented into three fractions, organic, inorganic, and dissolved, each with different physical and kinetic properties. The principal application of the model would be prediction of the year-to-year and steady-state response of the water column and sediments to changes in the loading rate of contaminant and/or particulate matter. A simulation of ${ }^{239} \mathrm{Pu}$ in Lake Michigan is presented as an example of the model's use.

1. INTRODUCTION

Presented here is a brief description of a sediment/water column contaminant model called SED. It was developed by Dr. Steven Chapra, now a Professor at Texas A \& M University, while he was at NOAA, Great Lakes Environmental Research Laboratory. Much of his work dealing with this model appears in "Long-term models of interactions between solids and contaminants in lakes" (Chapra, 1982), and Engineering Approaches for Luke Management-Vol. 2: Mechanistic Modeling (Chapra and Reckhow, 1982).

SED is a mathematical model designed to simulate the concentration of a contaminant in the sediments and overlying water column of a lake. It operates on an annual time scale, ignoring within-year variations. Its principal application would be to predict the year-to-year and steady-state responses of the water column and sediments to changes in the amount of contaminant and/or particulate matter entering the lake.

2. MODEL DEVELOPMENT

The contaminant being considered is divided into three components--that associated with organic particulate matter, that associated with inorganic particulate matter, and that dissolved in the water. Adsorption/desorption plays an important role in such a kinetic segmentation scheme because only the portion of a contaminant that associates with particulate matter is subject to settling and resuspension and only the dissolved component is subject to diffusion and vaporization.

[^0]The water column is idealized as a completely mixed volume resulting in a lake-wide average contaminant concentration. The sediments are horizontally subdivided into well-mixed "slices" varying in thickness from a half of a centimeter near the sediment/water interface to several meters in the deep sediment. This spatial segmentation scheme (figure l) yields a lakewide mean annual estimate of the level of contaminant in the water column and provides the vertical profile of contaminant in the sediments.

SED comprises two main parts--a solids budget and a contaminant budget. The solids budget uses information such as the loading rate of particulate matter, density and porosity of the sediments, and various settling rates to calculate the steady-state concentrations of organic and inorganic particulate matter in the water column and sediments, as well as the burial velocity (or sedimentation rate). The contaminant budget uses information such as the physical characteristics of the lake, the loading rate and kinetic properties of the contaminant, and the results of the solids budget to predict the concentration of the three forms of contaminant in the water column and sediments. See flow chart in figure 2.

2.1 Contaminant Budget

The contaminant budget consists of a set of coupled differential equations that result when mass balances are written for each of the three contaminant components within their respective "pools." A pool is simply a place of residence, so to speak, for each of the three components. Each

FIGURE 1.--Spatial segmentation scheme used in SED.

FIGURE 2.--Flow chart representing the pathways of SED.
well-mixed volume comprisesthree such pools--the organic solids volume (organic pool), the inorganic solids volume (inorganic pool), and the liquid volume (liquid pool). Contaminant levels within the three pools in each control volume depend on system inputs, system losses, and interactions between pools. Inputs are in the form of contaminant loading; losses include flushing, settling, vaporization, and decay; and interactions between pools consist of adsorption and desorption, resuspension, settling, and diffusion. See figure 3.

2.1.1 Water Column Balance

The term "water column" is somewhat imprecise--it refers to the entire lake volume, which includes all three pools, and not just to the liquid pool, as the term might suggest. But, since the porosity of the water column is assumed to be equal to one, the volume of the liquid pool is, in fact, essentially equal to the volume of the entire water column. This distinction is important in the sediments where the porosity is less than one. Presented below are the differential equations for the three pools in the water column and for the entire water column.

FIGURE 3.-Overview of contaminant budget. Arrows represent pathways of contaminant into and out of the system, between control volumes, and between pools.
2.1.1.1 Organic Pool. A mass balance for the contaminant associated with the organic solids in the water column can be written as

$$
\begin{array}{r}
m_{o, w} \frac{d v_{0, w}}{d t}=k_{a d, 0, w} m_{0, w} c_{1, w}-k_{d e, 0 w, m_{0, w} v_{0, w}-\frac{Q}{v_{t, w}} m_{0, w} v_{0, w}}^{\text {(absorption) }} \begin{array}{r}
\text { (desorption) }
\end{array} \text { (flushing) }
\end{array}
$$

$$
\begin{aligned}
& \text { (settling) (resuspension) (decay) }
\end{aligned}
$$

where $m_{o, w}=$ mass of organic suspended solids, grams dry weight*,
$\begin{aligned} v_{0, W}= & \text { curies** of contaminant associated with the organic } \\ & \text { solids per mass of organic solid, curies per gram, }\end{aligned}$
$k_{a d, o, w}=$ adsorption rate of contaminant from liquid pool to organic pool, cubic meters per gram per year,
$k_{d e, o, w}=$ desorption rate of contaminant from organic pool to liquid pool, per year,
$c_{1, w}=$ curies of contaminant dissolved in liquid pool per volume of liquid pool, curies per cubic meter,

Q $\quad=$ advective water flow leaving lake, cubic meters per year,
$\mathrm{V}_{\mathrm{t}, \mathrm{w}}=$ volume of water column, cubic meters,
$v_{o, w}=$ settling rate of organic solids, meters per year,
$A_{W} \quad=$ average surface area of the water column, square meters,
$\mathrm{v}_{\mathrm{r}} \quad=$ resuspension rate, meters per year,
$A_{m} \quad=$ surface area at sediment/water interface, square meters,

[^1]```
V V,m = volume of first sediment layer (mixed sediment), cubic
m
vo,m = curies of contaminant associated with the organic solids
 in the mixed sediment per mass of organic solid, curies per
 gram,
k
t = time, years, and
w = subscript denoting water column.
```

2.1.1.2 Inorganic Pool. A mass balance for the contaminant associated with the inorganic solids in the water column can be written as

$$
\begin{align*}
& m_{i, w} \frac{d v_{i, w}}{d t}=k_{a d, i, w} \quad m_{i, w} \quad c_{1}, k_{d e i}, m_{i w} v_{i, w}-\frac{Q}{V_{t, w}} m_{i, w} v_{i, w} \\
& \text { (adsorption) (desorption) (flushing) } \\
& \begin{array}{c}
\frac{v_{i, w} A_{w}}{V_{t, w}} m_{i, w} v_{i, w}+\frac{v_{r} A_{m}}{V_{t, m}} m_{i, m} \quad v_{i, m} k_{i w,} m_{i w} v_{i, w}, \\
\text { (settling) } \quad \text { (desuspension) }
\end{array} \tag{2}
\end{align*}
$$

where the terms are identical to the terms for the organic pool, except that the subscript "o" has been replaced by the subscript "i," denoting inorganic.
2.1.1.3 Liquid Pool. A mass balance for the contaminant dissolved in the liquid pool can be written as

$$
\begin{align*}
& V_{1, W} \frac{d c_{1, W}}{d t}=W_{c}(t)-Q c_{1 W}-v_{v} A_{S} c_{1 W}+k_{d e \Omega, W} m_{0, W} v_{0, W} \\
& \text { (loading) (flushing) (vaporization) (desorption) } \\
& -k_{a d, 0, W} m_{o, W} c_{1, W}+k_{d e, i+W} m_{i, W} \nu_{i, W}-k_{a d ; y} m_{i, y} c_{1 y} \\
& \text { (adsorption) (desorption) (adsoprtion) } \\
& +\frac{\phi E_{s} A_{m}}{\left(z_{b}+z_{m}\right) / 2}\left(c_{p w, m}-c_{1, w}\right)+v_{r} \phi A_{m} c_{p w, m}-k_{d, w} V_{1, w} c_{1, w},  \tag{3}\\
& \text { (diffusion) (resuspension) (decay) }
\end{align*}
$$

where $\mathrm{V}_{1, \mathrm{w}}=$ volume of the liquid pool, cubic meters,

| $W_{c}(t)$ | ```= loading rate of contaminant dissolved in the liquid pool, curies per year,``` |
| :---: | :---: |
| $\mathrm{v}_{\mathrm{v}}$ | = vaporization rate, meters per year, |
| $\mathrm{A}_{\mathbf{S}}$ | $=$ surface area at air/water interface, square meters, |
| ¢ | $=$ porosity of sediments, dimensionless, |
| $\mathrm{E}_{\text {S }}$ | $=$ diffusion coefficient, square meters per year, |
| ${ }^{2}{ }_{b}$ | $=$ thickness of the laminar boundary layer above the sediment/water interface, meters, |
| $\mathrm{z}_{\mathrm{m}}$ | $=$ thickness of mixed sediment layer, meters, |
| $\mathrm{c}_{\mathrm{pw}, \mathrm{m}}$ | = curies of dissolved contaminant per volume of liquid pool in mixed sediment, curies per cubic meter, and |
| $k_{d, w}$ | = decay rate of contaminant dissolved in 11quid pool, per ye | Note that

$$
\mathrm{E}_{\mathrm{s}}=\mathrm{E}_{\mathrm{m}} \phi^{2}
$$

where $\mathrm{E}_{\mathrm{m}}=$ molecular diffusion, square meters per year.
2.1.1.4 Total Contaminant in the Water Column. It is often more desirable to work in terms of the total contaminant (i.e., the sum of the three components), thus reducing the number of equations per control volume to one and greatly simplifying the calculations. Since sorption reactions typically proceed much faster than input-output processes, a local equilibrium can be assumed and equations (1), (2), and (3) can be combined to yield

$$
\begin{aligned}
& v_{t, w} \frac{d c_{t, w}}{d t}=w_{c}(t)-\frac{Q}{v_{t, w}} m_{o, w} v_{o, w}-\frac{Q}{v_{t w}} m_{i, w} v_{i, w}-Q c_{1, w} \\
& \frac{v_{o, w} A_{s}}{v_{t, w}} m_{o, w} v_{o, w}-\frac{v_{i, w} A_{s}}{v_{t, w}} m_{i, w} v_{i, w}-v_{v} A_{s} c_{1, w} \\
& +\frac{\phi E_{s} A_{m}}{z_{b}^{\prime}}\left(c_{p w, m}-c_{1, w}\right)+\frac{v_{r} A_{m}}{v_{t, m}} \underset{o, m}{v_{o, m}}+\frac{v_{r} A_{m}}{v_{t, m}} \underset{i, m}{ } v_{i, m}
\end{aligned}
$$

$$
\begin{equation*}
+v_{r} \phi A_{m} c_{p w, m}-k_{o, w} m_{o, w} \nu_{o w}-k_{i, w} m_{i, w} v_{i, w}-k_{d, w} v_{1, w} c_{1, w}, \tag{4}
\end{equation*}
$$

where $c_{t, w}=$ curies of total contaminant in water column per total volume of water column, curies per cubic meter, and
$z_{b}^{\prime} \quad=$ thickness defining the gradient between the mixed sediment and the overlying $W$ ater $\left(=\left(z_{b}+z_{m}\right) / 2\right)$,

Some new terms must be introduced to relate the individual terms $\nu_{0}, w$, $\nu_{i, w}$, and $c_{1, w}$ to the total concentration, $c_{t, w}$. Remember that, since the porosity of the water column is essentially equal to one, the volume of the liquid pool equals the volume of the water column, or

$$
v_{1, w}=v_{t, w} .
$$

And it follows that the concentration of dissolved contaminant with respect to the liquid pool, $c_{1, w}$, is essentially equal to the concentration of dissolved contaminant with respect to the total water column, or

$$
c_{1, w}=c_{d, w}
$$

where $c_{d, w}=$ curies of contaminant dissolved in liquid pool per total volume of water column, curies per cubic meter.

Defining the terms

$$
\begin{equation*}
c_{o, w}=\frac{m_{o, w} \gamma^{\gamma}, "}{v_{t, w}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{i, w}=\frac{m_{i, w} v_{i, w}}{v_{t, w}} \tag{6}
\end{equation*}
$$

where $c_{0, w}=$ curies of contaminant associated with organic solids per total water column volume, curies per cubic meter, and
$\begin{aligned} & c_{i, w}= \text { curies of contaminant associated with inorganic solids per } \\ & \text { total water column volume, curies per cubic meter, }\end{aligned}$
yields an expression for the total contaminant in the water column in terms of its three components,

$$
\begin{equation*}
c_{t, w}=c_{d, w}+c_{o, w}+c_{i, w} \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
c_{t, w}=c_{d, w}+\frac{m_{o, w} v_{o, w}}{v_{t, w}}+\frac{m_{i, w} v_{i, w}}{v_{t, w}} . \tag{8}
\end{equation*}
$$

In a temporal sense, many sorption reactions are rapid and are assumed to reach equilibrium much faster than the yearly time scale of the model. This equilibrium is a dynamic state representing a balance between adsorption and desorption, as in

$$
k_{a d, o, w} m_{o, w} c_{d, w}=k_{d e, o, w} m_{o, w} \nu_{o, w}
$$

and

$$
k_{a d, i, w} m_{i, w} c_{d, w}=k_{d e, i, w} m_{i, w} v_{i, w}
$$

With the above assumption, the following partition coefficients can be defined:

$$
\begin{equation*}
K_{d, o, w}=\frac{k_{a d, o, w}}{k_{d e, o, w}}=\frac{v_{o, w}}{c_{d, w}} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{d, i, w}=\frac{k_{a d, i, w}}{k_{d e, i, w}} \frac{v_{i, w}}{c_{d, w}}, \tag{10}
\end{equation*}
$$

where $K_{d, o, w}=\begin{aligned} & \text { organic partition (or distribution) coefficient in the water } \\ & \\ & \text { column, cubic meters per gram, and }\end{aligned}$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{d}, i, \mathrm{w}}= & \text { inorganic partition (or distribution) coefficient in the } \\
& \text { water column, cubic meters per gram. }
\end{aligned}
$$

Equations (8), (9), and (10) can be combined and rearranged to yield

$$
\begin{equation*}
c_{d, w}=F_{d, w} c_{t, w}, \tag{11}
\end{equation*}
$$

where $F_{d, w}=\frac{1}{1+\frac{m_{0, w} K_{d, o, w}}{V_{t, w}}+\frac{m_{i, w} K_{d, i, w}}{V_{t, w}}}$,
and

$$
\begin{equation*}
c_{o, w}=F_{0, w} \quad c_{t, w}, \tag{12}
\end{equation*}
$$

where $\mathrm{F}_{\mathrm{o}, \mathrm{w}}=\frac{\frac{\mathrm{m}_{\mathrm{o}, \mathrm{w}} \mathrm{K}_{\mathrm{d}, \mathrm{o}, \mathrm{w}}}{\mathrm{V}_{\mathrm{t}, \mathrm{w}}}}{1+\frac{\mathrm{m}_{\mathrm{o,w}} \mathrm{~K}_{\mathrm{d}, \mathrm{o}, \mathrm{w}}}{\mathrm{V}_{\mathrm{t}, \mathrm{w}}}+\frac{\mathrm{m}_{\mathrm{i}, \mathrm{w}} \mathrm{K}_{\mathrm{d}, \mathrm{i}, \mathrm{w}}}{\mathrm{V}_{\mathrm{t}, \mathrm{w}}}}$
and

$$
\begin{equation*}
c_{1, w}=F_{i, w} c_{t, w}, \tag{13}
\end{equation*}
$$

where $F_{i, w}=\frac{\frac{m_{i, w} K_{d, i, w}}{V_{t, w}}}{1+\frac{m_{o, w} K_{d, o, w}}{V_{t, w}}+\frac{m_{i, w} K_{d, i, w}}{V_{t, w}}}$

Thus,

$$
\begin{align*}
& c_{1, w}=c_{d, w}=F_{d, w} c_{t, w},  \tag{14}\\
& v_{o, w}=\frac{v_{t, w}}{m_{o, w}} F_{o, w} c_{t, w}, \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
v_{i, w}=\frac{v_{t, w}}{m_{i, w}} F_{i, w} c_{t, w} . \tag{16}
\end{equation*}
$$

Note that

$$
\mathrm{F}_{\mathrm{d}, \mathrm{w}}+\mathrm{F}_{\mathrm{o}, \mathrm{w}}+\mathrm{F}_{\mathrm{i}, \mathrm{w}}=1
$$

Finally, by substituting equations (14), (15), and (16) into equation (4), the total contaminant balance in the water column can be reexpressed as

$$
v_{t, w} \frac{d c_{t, w}}{d t}=W_{c}(t)-Q c_{t w}-v A_{v_{S}}^{A} F_{d W} c_{t w}-v_{0 W} A_{w} F_{o w} c_{t w}
$$

$$
\begin{aligned}
& -v_{i, W} A_{w} F_{i, w} c_{t_{d}}+\frac{\phi E_{s} A_{m}}{z_{b}^{\prime}}\left(F_{p w, m} c_{t, m}^{*}-F_{d, w} c_{t, w}\right)
\end{aligned}
$$

$$
\begin{align*}
& -k_{i, w} V_{t, w} F_{i, w} c_{t, w} \tag{17}
\end{align*}
$$

### 2.1.2 Mixed Sediment Balance

The mixed sediment is the first segment below the water column and is usually between 1 and 2 cm in depth. It is so called because of the intense mixing, or bioturbation, caused by the benthic organisms that reside there. The mixed sediment also comprises three pools--the liquid pool (also called the pore water), the organic pool, and the inorganic pool. Presented below are the differential equations for the three pools in the mixed sediment.
2.1.2.1 Organic Pool. A mass balance for the contaminant associated with the organic solids in the mixed sediment can be written as

[^2]\[

$$
\begin{align*}
& \text { (adsorption) (desorption) (settling) } \\
& -\frac{v_{b} A_{m}}{v_{t, m}} m_{o, m} \nu_{o, m}-\frac{v_{r} A_{m}}{v_{t, m}} m_{o, m} \nu_{o, m}-k_{o, m} m_{o, m} \nu_{o, m},  \tag{18}\\
& \text { (burial) (resuspension) (decay) }
\end{align*}
$$
\]

where $c_{p w, m}=$ curies of contaminant dissolved in pore water per volume of pore water, curies per cubic meter, and
$\mathrm{v}_{\mathrm{b}} \quad=$ burial velocity, meters per year.
The remaining terms are identical to the terms used for the organic pool in the water column, except that the subscript " $w$ " has been replaced by the subscript "m," denoting mixed sediment.
2.1.2.2 Inorganic Pool. A mass balance for the contaminant associated with the inorganic solids in the mixed sediment can be written as

$$
\begin{align*}
& m_{i, m} \frac{d \nu_{i, m}}{d t}=k_{a d, i, m} \quad m_{i, m} \quad c_{p w, d e ~ i m} m_{i, m} \nu_{i m}+v_{i, w} A_{w} F_{i, w} c_{t, w} \\
& \text { (adsorption) (desorption) (settiing) } \\
& \begin{array}{r}
-\frac{v_{b} A_{m}}{V_{t, m}} m_{i, m} \quad v_{i, m} \underbrace{v_{r} A_{m}}_{\text {(burial) }} \underset{m}{V_{t, m}} \quad-v_{k_{i m m}} m_{i m,} v_{i, m}, \\
\text { (resuspension) }
\end{array} \tag{19}
\end{align*}
$$

where the terms are identical to the terms used for the organic pool in the mixed sediment, except that the subscript " $o$ " has been replaced by the subscript "i," denoting inorganic.
2.1.2.3 Liquid Pool. A mass balance for the contaminant dissolved in the pore water in the mixed sediment can be written as

$$
\begin{align*}
& v_{p w, m} \frac{d c_{p w, m}}{d t}=k_{d e, o, m} m_{o, m} \nu_{o, m}-k_{a d, o m,}{ }^{m, m} c_{p w, m}+k_{d e, i m, m_{i m, m}} v_{i, m} \\
& \text { (desorption) (adsorption) (desorption) } \\
& -k_{a d, i, m} m_{i, m} c_{p w, m}+\frac{\phi E_{s} A_{m}}{z_{b}^{\prime}}\left(F_{d, w} c_{t, w}-c_{p w, m}\right) \\
& \text { (adsorption) } \\
& +\frac{\phi E_{s} A_{m}}{z_{m, 2}}\left(c_{p w, 2}-c_{p w, m}\right)-v_{b} \phi A_{m} c_{p w, m}-v_{r} \phi A_{m} c_{p w, m} \\
& \text { (diffusion) } \\
& \text { (burial) } \\
& \text { (resuspension) } \\
& -k_{d, m} V_{p w, m} c_{p w, m},  \tag{20}\\
& \text { (decay) }
\end{align*}
$$

where $V_{p w, m}=$ volume of the pore water, cubic meters,

$$
\begin{aligned}
c_{\mathrm{pw}, 2}= & \begin{array}{l}
\text { concentration of contaminant dissolved in the pore water in } \\
\\
\text { the second sediment layer, curies per cubic meter, and }
\end{array} \\
z_{\mathrm{m}, 2}= & \text { mixing zone between mixed sediment and second sediment } \\
& \text { layer }\left(=\left(z_{\mathrm{m}}+z_{2}\right) / 2\right), \text { meters. }
\end{aligned}
$$

The remaining terms are identical to the terms used for the liquid pool in the water column, except that the subscript " w " has been replaced by the subscript " m ," denoting mixed sediment.
2.1.2.4 Total Contaminant in the Mixed Sediment. Again it is desirable to work in terms of the total contaminant; therefore, adding equations (18), (19), and (20) yields

$$
\begin{aligned}
v_{t, m} \frac{d c_{t, m}}{d t} & =v_{o, w} A_{w} F_{o, w} c_{t, w}+v_{1, w} A_{w} F_{i, w} c_{t, w} \\
& +\frac{\phi E_{s} A_{m}}{z_{b}^{\prime}}\left(F_{d, w} c_{t, w}-c_{p w, m}\right)+\frac{\phi E_{s} A_{m}}{z_{m, 2}}\left(c_{p w, 2}-c_{p w, m}\right)
\end{aligned}
$$

$$
\begin{align*}
& -\frac{v_{b} A_{m}}{v_{t, m}} m_{o, m} v_{o, m}-\frac{v_{b} A_{m}}{v_{t, m}} m_{i, m} v_{i, m}-v_{b} \phi A_{m} c_{p w, m} \\
& -\frac{v_{r} A_{m}}{v_{t, m}} m_{o, m} v_{o, m}-\frac{v_{r} A_{m}}{v_{t, m}} m_{i, m} v_{i, m}-v_{r} \phi A_{m} c_{p w, m} \\
& -k_{d, m} \quad v_{p w, m} \quad c_{p, \rho m m} m_{o, m} v_{\rho, m}-k_{i m} m_{i, m} v_{i, m}, \tag{21}
\end{align*}
$$

where $c_{t, m}=$ curies of total contaminant in mixed sediment per total volume of mixed sediment, curies per cubic meter.

It is again necessary to relate the individual terms $v_{0, m}, v_{1, m}$, and $c_{p w, m}$ to the total concentration, $c_{t, m}$. The volume of the pore water can be related to the total volume of the mixed sediment by the porosity, as in

$$
V_{p w, m}=\phi V_{t, m} .
$$

The concentration of contaminant dissolved in the pore water can also be related by porosity to the concentration of contaminant dissolved in the total mixed sediment volume, as in

$$
\begin{equation*}
c_{d, \mathrm{~m}}=\phi c_{\mathrm{pw}, \mathrm{~m}} \tag{22}
\end{equation*}
$$

where $c_{d, m}=$ curies of contaminant dissolved in the pore water per total volume of mixed sediment, curies per cubic meter.

Defining the terms

$$
\begin{equation*}
c_{o, m}=\frac{m_{o, m} v_{o, m}}{v_{t, m}} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{i, m}=\frac{m_{i, m} v_{i, m}}{v_{t, m}} \tag{24}
\end{equation*}
$$

where $c_{0, m}=$ curies of contaminant associated with organic solids per total volume of mixed sediment, curies per cubic meter, and
$c_{1, \mathrm{~m}}=$ curies of contaminant associated with inorganic solids per total volume of mixed sediment, curies per cubic meter,
yields an expression for the total contaminant in the mixed sediment in terms of its three components as follows:

$$
\begin{equation*}
c_{t, m}=c_{d, m}+c_{o, m}+c_{i, m} \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
c_{t, m}=\phi c_{p w, m}+\frac{m_{o, m} v_{o, m}}{v_{t, m}}+\frac{m_{1, m} v_{i, m}}{v_{t, m}} \tag{26}
\end{equation*}
$$

Equation (26) can be further simplified by the use of the following equations:

$$
\begin{equation*}
\frac{\mathrm{m}_{0, \mathrm{~m}}}{\mathrm{v}_{\mathrm{t}, \mathrm{~m}}}=\rho_{\mathrm{o}} \phi_{0} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{m_{i, m}}{v_{t, m}}=\rho_{i} \phi_{i} \tag{28}
\end{equation*}
$$

where $\rho_{0}=\begin{aligned} & \text { mass density of the organic solids in the mixed sediment, grams } \\ & \text { per cubic meter, }\end{aligned}$
$\phi_{o}=$ volume of the organic solids per total mixed sediment volume, dimensionless,
$\begin{aligned} \rho_{i}= & \text { mass density of the inorganic solids in the mixed sediment, } \\ & \text { grams per cubic meter, and }\end{aligned}$
$\phi_{i}=$ volume of the inorganic solids per total mixed sediment volume, dimensionless.

Note that

$$
\phi+\phi_{0}+\phi_{i}=1
$$

Thus,

$$
\begin{equation*}
c_{t, \mathrm{~m}}=\phi c_{\mathrm{pw}, \mathrm{~m}}+\rho_{\mathrm{o}} \phi_{\mathrm{o}} \nu_{\mathrm{o}, \mathrm{~m}}+\rho_{i} \phi_{i} v_{i, \mathrm{~m}} \tag{29}
\end{equation*}
$$

Again, partition coefficients are defined as

$$
\begin{align*}
& K_{d, o, m}=\frac{k_{a d, o, m}}{k_{d e, o, m}}=\frac{v_{o, m}}{c_{p w, m}}  \tag{30}\\
& K_{d, i, m}=\frac{k_{a d, i, m}}{k_{d e, i, m}}=\frac{v_{i, m}}{c_{p w, m}},
\end{align*}
$$

where $K_{d, o, m}=$ organic partition coefficient, cubic meters per gram, and

$$
\mathrm{K}_{\mathrm{d}, \mathrm{i}, \mathrm{~m}}=\text { inorganic partition coefficient, cubic meters per gram. }
$$

Equations (29), (30), and (31) can be combined and rearranged to yield

$$
\begin{equation*}
c_{p w, m}=F_{p w, m} c_{t, m}, \tag{32}
\end{equation*}
$$

where $F_{p w, m}=\frac{1}{\phi+\rho_{0} \phi_{0} K_{d, o, m}+\rho_{i} \phi_{i} K_{d, i, m}}$,
and

$$
\begin{equation*}
c_{0, m}=F_{o, m} c_{t, m}, \tag{33}
\end{equation*}
$$

where $F_{o, m}=\frac{\rho_{o} \phi_{o} K_{d} \Omega m^{m}}{\phi+\rho_{o} \phi_{o} K_{d o, m}} \frac{\rho_{i} \phi_{i} K_{d, i, m}}{}$,

$$
\begin{equation*}
c_{i, m}=F_{i, m} c_{t, w}, \tag{34}
\end{equation*}
$$

where $F_{i, m}=\frac{\rho_{i} \phi_{i} K_{d}, \underline{i}, m}{\phi+\rho_{o} \phi_{o} K_{d, o, m}}+\rho_{i} \phi_{i} K_{d, i}, m$,
and

$$
\begin{equation*}
c_{d, m}=F_{d, m} c_{t, m}, \tag{35}
\end{equation*}
$$

where $F_{d, m}=\phi F_{p w, m}$.

Thus,

$$
\begin{gather*}
c_{p w, m}=F_{p w, m} c_{t, m}  \tag{36}\\
c_{d, m}=\phi c_{p w, m}=F_{d, m} c_{t, m},  \tag{37}\\
v_{o, m}=\frac{v_{t, m}}{m_{0, m}} F_{o, m} c_{t, m}, \tag{38}
\end{gather*}
$$

and

$$
\begin{equation*}
v_{i, m}=\frac{v_{t, m}}{m_{i, m}} F_{i, m} c_{t, m} . \tag{39}
\end{equation*}
$$

Note that

$$
F_{d, m}+F_{o, m}+F_{i, m}=1
$$

Finally, by substituting equations (36), (37), (38), and (39) into equation (21), the total contaminant balance in the mixed sediment can be reexpressed as
$v_{t, m} \frac{d c_{t, m}}{d t}=-v_{0, w} A_{w} F_{o, w} c_{t, w}+v_{i, w} A_{w} F_{1, w} c_{t, w}-v_{b} A_{m} c_{t, m}$

$$
\begin{align*}
& -v_{r} A_{m} c_{t, m}-k_{d, m} v_{t, m} F_{d, m} c_{t, m}-k_{o, m} v_{t, m} F_{o, m} c_{t, m} \\
& -k_{1, m} v_{t, m} F_{i, m} c_{t, m}+\frac{\phi E_{s} A_{m}}{z_{b}^{\prime}}\left(F_{d, w} c_{t, w}-F_{p w, m} c_{t, m}\right) \\
& +\frac{\phi E_{s} A_{m}}{{ }^{2} 1,2}\left(F_{p w, 2} c_{t, 2} *-F_{p w, m} c_{t, m}\right) . \tag{40}
\end{align*}
$$

### 2.1.3 Deep Sediment Balance

The total contaminant budget for the remaining segments is formulated in much the same way as that of the mixed sediment layer. The settling term is represented as a product of the settling velocity, sediment surface area, and concentration at the interface between each segment. The concentration at the interface depends on the levels in both segments, which can be approximated by

$$
c_{j, k}=\alpha_{j, k} c_{j}+\beta_{j, k} c_{k}
$$

where $c_{j, k}=$ the concentration at the interface between the $j^{\text {th }}$ and $k^{\text {th }}$

$$
\begin{aligned}
& c_{j}=\text { concentration in the } j^{\text {th }} \text { segment, } \\
& c_{k}=\text { concentration in the } k^{\text {th }} \text { segment, and } \\
& \alpha, \beta=\text { weighting factors }(\alpha+\beta=1)
\end{aligned}
$$

Presented below is the final equation for the total contaminant in segment $i$, where $i=2, n s$ (ns being the total number of segments),

$$
\begin{aligned}
v_{t, i} \frac{d c_{t, i}}{d t} & =v_{b} A_{m}\left(\alpha_{i-1, i} c_{t, i-1}+\beta_{i-1, i} c_{t, i}\right) \\
& -v_{b} A_{m}\left(\alpha_{i, i+1} c_{t, i}+\beta_{i, i+1} c_{t, i+1}\right)
\end{aligned}
$$

[^3]\[

$$
\begin{align*}
& +\frac{\phi E_{s} A_{m}}{z_{i-1, i}}\left(F_{p w, i-1} c_{t, i-1}-F_{p w, i} c_{t, i}\right) \\
& +\frac{\phi E_{s} A_{m}}{z_{i, i+1}}\left(F_{p w, i+1} c_{t, i+1}-F_{p w, i} c_{t, i}\right) \\
& -k_{i, i} v_{t, i} F_{i, i} c_{t, i}-k_{o, i} v_{t, i} F_{o, i} c_{t, i}-k_{d, i} v_{t, i} F_{d, i} c_{t, i}, \tag{41}
\end{align*}
$$
\]

where $i=$ segment number.
The remaining terms are the same as those used in the total contaminant balance in the mixed sediment.

### 2.2 Solids Budget

The contaminant budget previously described relies on the knowledge of the levels of particulate matter in the water column and sediments. Therefore a solids budget is obtained that yields the concentration of organic and inorganic solids in the two regimes, as well as the rate of burial to the deep sediments.

The spatial segmentation scheme of the solids budget is somewhat different than that of the contaminant budget. The system is divided into only two well-mixed zones, the water column and the mixed sediment, with unidirectional burial to the deep sediments. It is assumed that the solids balance is at a steady state and that compaction is negligible (i.e., porosity is constant).

The inorganic solids are assumed to be strictly allochthonous, i.e., they originate outside the lake and are transported into the system via the the wind and tributary streams. The organic solids are assumed to be autochthonous; i.e., they originate within the lake via primary production.

### 2.2.1 Inorganic Solids

Writing mass balances for the inorganic particulate matter in the water column and mixed sediment results in the following differential equations:

$$
\begin{align*}
& V_{t, w} \frac{d s_{i, w}}{d t}=\Psi-Q s_{i, w}-v_{i, w} A_{w} s_{i, w}+v_{r} A_{m} \rho_{i} \phi_{i}  \tag{42}\\
& \text { (loading) (flushing) (settling) (resuspension) }
\end{align*}
$$

and

$$
\begin{align*}
& v_{t, m} \frac{d\left(\rho_{1} \phi_{i}\right)}{d t}= v_{i w} A_{w} s_{i} w  \tag{43}\\
& \text { (settling) } v_{r} A_{m} \rho_{i} \phi_{i}-v_{b} A_{m} \rho_{i} \phi_{i}, \\
& \text { (resuspension) (settling) }
\end{align*}
$$

$$
\text { where } \begin{aligned}
s_{i, w}= & \text { concentration of inorganic suspended solids in the water } \\
& \text { column }\left(=m_{i, w} / v_{t}, w\right) \text { grams per cubic meter, } \\
= & \text { loading rate of inorganic solids, grams per year, and } \\
\rho_{i} \phi_{i}= & \text { concentration of inorganic solids in the mixed sediment } \\
& \left(=m_{i, m} / v_{t, m}\right), \text { grams per cubic meter. }
\end{aligned}
$$

Remember that

$$
\begin{equation*}
\phi+\phi_{0}+\phi_{i}=1 \tag{44}
\end{equation*}
$$

### 2.2.2 Organic Solids

The concentration of organic solids is assumed to be directly proportional to the level of particulate organic phosphorus, as in

$$
\begin{equation*}
s_{o, w} \frac{o, p}{\alpha_{p d}} \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{o} \phi_{o}=\frac{p_{o, m}}{\alpha_{p d}}, \tag{46}
\end{equation*}
$$

where $s_{o, w}=$ concentration of organic suspended solids in the water column ( $=\mathrm{m}_{\mathrm{o}, \mathrm{w}} / \mathrm{V}_{\mathrm{t}, \mathrm{w}}$ ), grams per cubic meter,
$\mathrm{p}_{\mathrm{o}, \mathrm{w}}=$ concentration of particulate organic phosphorus in the water column, milligrams of phosphorus per cubic meter,
$P_{o, m}=$ concentration of particulate organic phosphorus in the mixed sediment, milligrams of phosphorus per cubic meter,
$\begin{aligned} \alpha_{p d}= & \text { fixed stofchiometric coefficient, milligrams of phosphorus per } \\ & \text { gram, and }\end{aligned}$
$P O \phi_{0}=$ concentration of organic solids in the mixed sediment $\left(=m_{0, m} / V_{t, m}\right)$, grams per cubic meter.

A mass balance written for total phosphorus in the water column yields

$$
\begin{aligned}
& v_{t, w} \frac{d p_{t, w}}{d t}= W_{p}-Q p_{t, w}-v_{o, w} A_{w} p_{o, w}-v_{i, w} A_{w} p_{1, w} \\
& \text { (loading) (flushing) } \\
& \text { (settling) } \\
&+ v_{r} A_{m}\left(p_{o m}+p_{i, m}\right), \\
& \text { (resuspension) }
\end{aligned}
$$

where $p_{t}=$ total phosphorus concentration in the water column, milligrams of phosphorus per cubic meter,
$W_{p}$ = rate of total phosphorus loading, milligrams of phosphorus per year,
$p_{i, w}=$ concentration of particulate inorganic phosphorus in the water column, milligrams of phosphorus per cubic meter, and
$p_{i, m}=\begin{gathered}\text { concentration of particulate inorganic phosphorus in the } \\ \text { mixed sediment, milligrams of phosphorus per cubic meter. }\end{gathered}$

Note that

$$
\begin{equation*}
p_{t, w}=p_{d, w}+p_{o, w}+p_{i, \cdots} \tag{48}
\end{equation*}
$$

where $\mathrm{Pd}, \mathrm{w}=$ concentration of dissolved phosphorus in the water column, milligrams of phosphorus per cubic meter.

The individual terms $p_{C, w}$ and $p_{i, w}$ can be expressed in terms of total phosphorus, $P_{t} w$, with the use of some conversion factors, as in

$$
\begin{equation*}
\mathrm{p}_{\mathrm{o}, \mathrm{w}}=\mathrm{F}_{\mathrm{p}, \mathrm{o}, \mathrm{w}} \mathrm{p}_{\mathrm{t}, \mathrm{w}}, \tag{49}
\end{equation*}
$$

where $F_{p, o, w}=\frac{\pi_{o}}{1+\pi_{o}+K_{d, i, p} s_{1, w}}$,
and

$$
\begin{equation*}
p_{i, w}=F_{p, i, w} p_{t, w}, \tag{50}
\end{equation*}
$$

where $F_{p, 1, w}=\frac{K_{d, i, p} s_{i, w}}{1+\pi_{0}+K_{d, i, p} s_{1, w}}$
The terms $\pi_{o}$ and $K_{d, i, p}$ are partition coefficients that relate the particulate and dissolved fractions, as in

$$
\pi_{\mathrm{o}}=\frac{\mathrm{p}_{\mathrm{o}, \mathrm{w}}}{\mathrm{p}_{\mathrm{d}, \mathrm{w}}}
$$

and

$$
K_{d, i, p}=\frac{v_{p, i, w}}{p_{d, w}},
$$

where $\nu_{p, i, w}=$ mass specific concentration of phosphorus associated with inorganic solids, milligrams of phosphorus per gram.

Substituting equations (49) and (50) into equation (47) yields

$$
\begin{align*}
v_{t, w} \frac{d p_{t, w}}{d t} & =W_{p}-Q p_{t, w}-v_{o, w} A_{w} F_{p, o, w} p_{t, w}-v_{i, w} A_{w} F_{p, i, w} p_{t, w} \\
& +v_{r} A_{m}\left(p_{o m}+p_{i, m}\right) . \tag{51}
\end{align*}
$$

The mass balance equations for organic and inorganic particulate phosphorus in the mixed sediment are, respectively,

$$
\begin{aligned}
& V_{t, m} \frac{d p_{o, m}}{d t}= v_{o w} A_{w} F_{p, o, w} p_{t, w}-v_{r} A_{m} p_{o, m}-v_{b} A_{m} p_{o, m} \\
& \quad \text { (settling) (resuspension) (settling) } \\
&-K_{m} v_{t, m} p_{o, m} \\
& \text { (remineralization) }
\end{aligned}
$$

and

$$
\begin{aligned}
v_{t, m} \frac{d p_{1, m}}{d t}= & v_{i, w} A_{w} F_{p, i, w} p_{t, w}-v_{r} A_{m} p_{i, m}-v_{b} A_{m} p_{i, m} \\
& \quad \text { (sett1ing) } \\
& \text { (resuspension) (settling) } \\
& \quad K_{m} v_{t, m} p_{o, m}, \\
& \text { (remineralization) }
\end{aligned}
$$

where $K_{\mathrm{m}}=$ remineralization rate, per year.
Equations (42), (43), (44), (51), (52), and (53) represent six nonlinear equations with six unknowns--s $\mathrm{s}_{1, w}, \phi_{i}, \mathrm{v}_{\mathrm{b}}, \mathrm{P}_{\mathrm{t}}, \mathrm{w}, \mathrm{P}_{\mathrm{o}}, \mathrm{m}$, and $\mathrm{P}_{\mathrm{i}}, \mathrm{m} \cdot$ These equations, except equation (44), can be set equal to zero (steadystate assumption) and solved simultaneously*. Once these six parameters have been determined, then equations (45) and (46) can be used to calculate $S_{o, w}$ and $\phi_{0}$, respectively. Finally, the values for $s_{o, w}, s_{i, w}, \phi_{0}, \phi_{i}$, and $\mathrm{v}_{\mathrm{b}}$ are made available for use by the contaminant budget.
3. MODEL USE

Numerical integration is used to solve the set of differential equations that constitute SED. Inftial contaminant values at time zero are required in all segments (i.e., the water column and each sediment layer). The physical and kinetic parameters, such as the lake and contaminant data, must also be defined before the start of the simulation. The annual rates of contaminant loading $W_{C}$ are read from an input file. SED is capable of estimating the loading rates for years when there are no data by linearly interpolating between years for which data exist.

[^4]Before integration can begin, certain model parameters must also be specified, such as the year corresponding to time zero and the number of years of simulation. It is also necessary to have a print step to determine how often during the simulation the results are to be printed (e.g., after every year). A maximum time step of integration (i.e., one that will prevent instability) is internally calculated, but the actual time step is set at a lower value to increase accuracy. A mass balance is calculated at the end of each time step as a check that mass is being conserved throughout the simulation. Complete lists of the lake, contaminant, and model parameters used in SED are presented in tables 1,2 , and 3, respectively. All of these parameters must be defined to assure proper execution.

The model output consists of the results from the solids budget, contaminant budget, initial calculations, and mass balance. To assure their accuracy, the annual contaminant loading rates and various other input parameters are also printed as output. Finally, SED draws five plots-contaminant loading versus time, total contaminant concentration in the water column versus time, total contaminant concentration in the sediments versus depth, concentration of contaminant dissolved in the pore water versus depth, and concentration of contaminant associated with the solids in the sediment versus depth. An example of the model output is presented in the following exercise.

Example. Use the parameter values used in tables 1, 2, and 3 to simulate the concentration of 239 Pu in the water column and sediments of lake Michigan from 1953 to 1977.

A copy of the model output for the above simulation is presented in appendix $A$ and the five plots are presented in figures 4 and 5. A complete listing of SED is presented in appendix $B$.

TABLE 1.--Lake parameters used in the simulation of ${ }^{239} P u$ in Lake Michigan (Chapra, 1982;Chapra and Sonzogni, 1979; Bannerman et al., 1974).

| Parameter | Symbol | Value | Units |
| :---: | :---: | :---: | :---: |
| Outflow | Q | $60 \times 10^{9}$ | $\mathrm{m}^{3} \mathrm{yr}^{-1}$ |
| Air/water surface area | $\mathrm{A}_{\text {s }}$ | $56 \times 10^{9}$ | $\mathrm{m}^{2}$ |
| Lake surface area | ${ }_{\text {A }}^{\text {W }}$ | $50 \times 10^{9}$ | $\mathrm{m}^{2}$ |
| Sediment surface area | $\mathrm{A}_{\mathrm{m}}$ | $30 \times 10^{9}$ | $\mathrm{m}^{2}$ |
| Lake depth | $z_{\text {w }}$ | 90.5 | m |
| Sediment layer depths | $z_{s}$ | * | m |
| Mixing zone | $z_{b}$ | 0.01 | m |
| Number of segments | $\mathrm{n}_{\mathrm{s}}$ | 30 |  |
| Settling velocity of forganic solids | $\mathrm{v}_{\mathrm{i}, \mathrm{w}}$ | 109.5 | m $\mathrm{yr}^{-1}$ |
| ```Settling velocity of organic solids``` | $\mathrm{v}_{\mathrm{o}}$, w | 54.75 | m $\mathrm{yr}^{-1}$ |
| Settling velocity to deep sediments | $\mathrm{v}_{\mathrm{b}}$ | $\dagger$ | m $\mathrm{yr}^{-1}$ |
| Resuspension rate | $\mathrm{v}_{\mathrm{r}}$ | 0 | m $\mathrm{yr}^{-1}$ |
| Inorganic solids concentration in the water column | $\mathrm{s}_{1, \mathrm{w}}$ | $\dagger$ | $g \mathrm{~m}^{-3}$ |
| Organic solids concentration in the water column | $\mathrm{s}_{\mathrm{o}, \mathrm{w}}$ | $\dagger$ | $\mathrm{g} \mathrm{m}^{-3}$ |
| Rate of inorganic solids loading | $\Psi$ | $6 \times 10^{12}$ | g $\mathrm{yr}^{-1}$ |
| Porosity | ¢ | 0.8 |  |
| Ratio of inorganic solids volume to total volume in sediment | $\phi_{i}$ | $\dagger$ |  |

TABLE I.--Lake parameters used in the simulation of ${ }^{239} P u$ in Lake Michigan-4cont.I

| Parameter | Symbol | Value | Units |
| :---: | :---: | :---: | :---: |
| ```Ratio of organic solids volume to total volume in sediment``` | $\phi_{0}$ | $\dagger$ |  |
| Inorganic solids density | Pi | $2.5 \times 10^{6}$ | $g \mathrm{~m}^{-3}$ |
| Organic solids density | $\rho_{0}$ | $1.27 \times 10^{6}$ | $\mathrm{g} \mathrm{m}{ }^{-3}$ |
| Total phosphorus loading rate | $\mathrm{W}_{\mathrm{p}}$ | $6 \times 10^{12}$ | $\operatorname{mgP} \mathrm{yr}^{-1}$ |
| Stochiometric coefficientorganic $P / d r y$ weight | $\alpha_{\text {pd }}$ | 10 | $\mathrm{mg} P \mathrm{~g}^{-1}$ |
| Partition coefficient-inorganic <br> $\mathrm{P} /$ dissolved P | $K_{d, i, p}$ | 0.001 | $m^{3} g^{-1}$ |
| ```Partition coefficient-organic P/dissolved P``` | $\pi_{0}$ | 0.333 |  |
| Remineralization rate of organic $P$ to inorganic $P$ | $\mathrm{K}_{\text {m }}$ | 0.001 | $\mathrm{yr}^{-1}$ |

*The segement depths, starting from the mixed sediment, are as follows (in centimeters):

$$
2,20 \times 0.5,1,2,4,8,16,32,64,128,256 .
$$

${ }^{\dagger}$ These values are internally calculated by the solids budget and then input to the contaminant budget.

TABLE 2.--Contaminant parameters used in the simulation of ${ }^{239} \mathrm{Pu}$ in Lake Michigan (Chapra, 1982; Wahtgren et al., 1980)


[^5]TABLE 3.--Model parameters used in the simulation of ${ }^{239} P^{P u}$ in Lake Michigan

| Parameter | Symbol | Value | Units |
| :--- | :---: | :---: | :---: |
| Year at time zero | $\mathrm{t}_{\mathrm{o}}$ | 1953 | yr |
| Number of years of simulation | $\mathrm{n}_{\mathrm{y}}$ | 25 | yr |
| Print step | $\mathrm{t}_{\mathrm{p}}$ | 1 | yr |
| Time step | $\mathrm{t}_{\mathrm{c}}$ | 0.005 | yr |



FIGURE 4.--Loading rate of ${ }^{239} \mathrm{Pu}$ to Lake Michigan, 1953-77 (Ciyr-1) (Zeft), and simulated total concentration of 239 Pu in water column ( $\mathrm{pCim} \mathrm{m}^{3}$ ) (right).


FIGURE5.--Simulated total concentration of 239 Pu in Lake Michigan sediments, 1973 ( $\mu \mathrm{Ci} \mathrm{m}^{3}$ )(left); simulated pore water concentration, 1973 ( $\mathrm{pCim} \mathrm{m}^{3}$ )(middle); simulated solids concentration, 1973 ( $\mathrm{pCi}_{\mathrm{d}^{-1}}$ ) (right).

## 4. REFERENCES

Bannerman, R. T., Armstrong, D. E, Holdren, G. C., and Harris, R. F. (1974): Phosphorus mobility in Lake Ontario sediments (IFYGL). In: Proc. Seventeenth Conf. on Great Lakes Res., Part 1, International Association for Great Lakes Research, McMaster University, and Canada Centre for Inland Waters, Hamilton, Ont., August 12-14, 1974, pp. 158-178.

Chapra, S. C. (1982): Long-term models of interactions between solids and contaminants in lakes. Ph.D. dissertation. The Univ. of Mich., Ann Arbor, pp. 76-106.

Chapra, S. C., and Sonzogni, W. C. (1979): Great Lakes total phosphorus budget for the mid 1970s. J. Water Pollution Control Federation 51:2524-2533.

Chapra, S. C., and Reckhow, K. H. (1982): Engineering Approaches for Lake Management--Vol. 2: Mechanistic Modeling. Ann Arbor Science, Ann Arbor, Mich., (in press).

Wahlgren, M. A., Robbins, J. A., Edgington, D. N. (1980): Plutonium in the Great Lakes. In: Transuranic Elements in the Environment, ed. W. C. Hanson, U.S. Department of Energy, 746 pp.

Appendix A--EXAMPLE OF MODEL OUTPUT FOR ${ }^{239}{ }^{\text {Pu }}$ SIMULATION IN LAKE MICHIGAN

| $Q(C U M / Y R)=$ | $.6000 E+11$ |
| :--- | :--- |
| $A S(S Q M)=$ | $.5600 E+11$ |
| $A W(S Q M)=$ | $.5000 E+11$ |
| $A M(S O M)=$ | $.3000 E+11$ |
| $Z W(M)=$ | 50.500 |
| $V O(M / Y R)=$ | 54.750 |
| $V I(M / Y R)=$ | 109.500 |
| $V R(M / Y R)=$ | 0.000 |
| $Z B(M)=$ | .010 |
| $P S I(G / Y R)=$ | $.6000 E+13$ |
| $W P(M G P / Y R)=$ | $.6000 E+13$ |
| $K R E M(/ Y R)=$ | .0010 |
| $K D I P(C U M / G)=$ | .0010 |
| $P A R A=$ | .3333 |
| $A P D(M P P / G)=$ | 10.00 |

## CONTAMINANT PARAMEIERS-PLUTONIUM.....

| $K R W(/ Y R)=$ | 0.000 |
| :--- | :--- |
| $K R S(/ Y R)=$ | 0.000 |
| $K D O W(C U M / G)=$ | .500 |
| $K D I W(C U M / G)=$ | .500 |
| $K D O M(C U M / G)=$ | .020 |
| $K D I M(C U M / G)=$ | .020 |
| $E S(S Q M / Y R)=$ | .0244 |
| $V V(M / Y R)=$ |  |

```
... ..SOLIDS BUOGET......
```

PTW (MG P/CUM) $=8.0186$
POM , MG P/CUM) $=.3771 E+06$
PIM, MGP/CUM) $=. .1879 E+05$
SIW, G/CUM) $=1.0840$
PHII $\quad .1703$
$V B(M / Y R)=.4647 E-03$
......INITIALCALCULATIONS.......

| SUW (G/CU | M) = | .2003 |
| :---: | :---: | :---: |
| SIW (G/CU | $M 1=1$ | . 0840 |
| PHIO*RHOO | (G/CJM) $=$ | . $3771 \mathrm{E}+05$ |
| PHII*RHOI | $(G / C U M)=$ | . $4258 E+06$ |
| FOW = | . $6090 \mathrm{E}+00$ |  |
| FOW $=$ | . $6099 \mathrm{E}-01$ |  |
| FIW = | . $3301 \mathrm{E}+00$ |  |
| FPWM $=$ | -1079E-03 |  |
| FOM = | - B630E-04 |  |
| FOM = | . 8136E-01 |  |
| FIM $=$ | $.9186 E+00$ |  |
| PHI $\Rightarrow$ | .8000 |  |
| PHIO ${ }^{\text {P }}$ | . 0297 |  |
| PHI, = | .1703 |  |


| 1 | . 020 | 1.0000 | 0.0000 |
| :---: | :---: | :---: | :---: |
| 2 | . 005 | . 5000 | . 5000 |
| 3 | . 005 |  | . 5000 |
| 4 | .005 | . 5000 | . 5000 |
| 5 | . 005 | . 5000 | . 5000 |
| 6 | . 005 | . 5000 | . 5000 |
| 7 | . 005 | . 5000 | . 5000 |
| 8 | . 005 | . 5000 | . 5000 |
| 9 | . 005 | . 5000 | . 5000 |
| 10 | . 035 | . 5000 | . 5000 |
| 11 | . 035 | . 5000 | . 5000 |
| 12 | . 005 | . 5000 | . 5000 |
| 13 | . 005 | . 5000 | . 5000 |
| 14 | . 005 | . 5000 | . 5000 |
| 15 | . 005 | . 5000 | . 5000 |
| 16 | . 005 | . 5000 | . 5000 |
| 17 | .005 | . 5000 | . 5000 |
| 18 | . 035 | . 5000 | . 5000 |
| 19 | . 005 | . 5000 | . 5000 |
| 20 | . 005 | . 5000 | . 5000 |
| 21 | . 035 | . 6667 | .3333 |
| 22 | . 010 | . 6720 | .3280 |
| 23 | . 020 | . 8610 | . 1390 |
| 24 | . 040 | . 9555 | . 0445 |
| 25 | . 080 | 1.0000 | 0.0000 |
| 26 | . 160 | 1.0000 | 0.0000 |
| 27 | . 320 | 1.0000 | 0.0000 |
| 28 | . 640 | 1.0000 | 0.0000 |
| 29 | 1.280 | 1.0000 | 0.0000 |
| 30 | 2.550 | 1.0000 | 0.0000 |
| 31 | 5.120 | 1.0000 | 0.0000 |

T H ETIMES TE P O FINTEGRATION(YEARS)=.005


```
..LOADING (CURIES/YEAR).............
```

| TIME | LOAO |
| :--- | ---: |
| 1953. | 0.00 |
| 1954. | 3.36 |
| 1955. | 3.75 |
| 1956. | 4.48 |
| 1957. | 3.42 |
| 1958. | 7.56 |
| 1959. | 2.24 |
| 1960. | 2.24 |
| 1961. | 9.52 |
| 1962. | 19.15 |
| 1963. | 6.16 |
| 1964. | 1.85 |
| 1965. | 1.40 |
| 1966. | 1.96 |
| 1967. | 2.41 |
| 1968. | 2.13 |
| 1969. | .73 |
| 1970. | .62 |
| 1971. | 1.46 |
| 1972. | .56 |
| 1973. | .73 |

. CONCENTRATION IN THE HATER COLUMN............................

| IIME | $\begin{gathered} \text { TOTAL } \\ \text { CI/CU M } \end{gathered}$ | $\begin{gathered} \text { DISS } \\ \text { CI/CU } \end{gathered}$ | $\begin{aligned} & \text { INORG } \\ & \text { CI/CU M } \end{aligned}$ | $\begin{aligned} & \text { INORG } \\ & \text { CI/GM } \end{aligned}$ | $\begin{gathered} \text { ORG } \\ \text { CI/CU M } \end{gathered}$ | $\begin{gathered} \text { ORG } \\ \text { CI/GM } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1953. | 0. | 0. | 0. | 0. | 0. | 0. |
| 1954. | . $5975 \mathrm{E}-12$ | . $3638 \mathrm{E}-12$ | $.1972 \mathrm{E}-12$ | . $1819 \mathrm{E}-12$ | . $3644 \mathrm{E}-13$ | .1819E-12 |
| 1955. | . $1048 \mathrm{E}-11$ | . $6379 \mathrm{E}-12$ | . $3458 \mathrm{E}-12$ | . $3190 \mathrm{E}-12$ | .6389E-13 | . $3190 \mathrm{E}-12$ |
| 1956 | .1465 E-11 | . $8921 \mathrm{E}-12$ | . $4835 \mathrm{E}-12$ | . 4461 E-12 | .8935 E-13 | . $4461 \mathrm{E}-12$ |
| 1957. | . $1544 \mathrm{E}-11$ | . $9402 \mathrm{E}-12$ | . $5096 \mathrm{E}-12$ | . $4701 \mathrm{E}-12$ | $.9416 \mathrm{E}-13$ | .4701E-12 |
| 1958 | . $2334 \mathrm{E}-11$ | . $1422 \mathrm{E}-11$ | . $7705 \mathrm{E}-12$ | . $7108 \mathrm{E}-12$ | . $1424 \mathrm{E}-12$ | .7108E-12 |
| 1959 | . $3140 \mathrm{E}-11$ | . $1912 \mathrm{E}-11$ | . $1036 \mathrm{E}-11$ | $.9560 E-12$ | . $1915 \mathrm{E}-12$ | . $9560 \mathrm{E}-12$ |
| 1960. | . $2413 \mathrm{E}-11$ | . $1469 \mathrm{E}-11$ | . $7965 \mathrm{E}-12$ | . $7347 \mathrm{E}-12$ | . $1472 \mathrm{E}-12$ | . $7347 \mathrm{E}-12$ |
| 1961. | . $2166 \mathrm{E}-11$ | $.1319 \mathrm{E}-11$ | . $7150 \mathrm{E}-12$ | .6596E-12 | .1321E-12 | . $6596 \mathrm{E}-12$ |
| 1962. | . $3099 \mathrm{E}-11$ | . 1887E-11 | . 1023E-11 | . $9437 \mathrm{E}-12$ | . $1890 \mathrm{E}-12$ | . 9437E-12 |
| 1963 | . $5410 \mathrm{E}-11$ | . $3295 \mathrm{E}-11$ | . $1786 \mathrm{E}-11$ | . $1647 \mathrm{E}-11$ | . $3300 \mathrm{E}-12$ | . $1647 \mathrm{E}-11$ |
| 1964. | .6072E-11 | . $3697 \mathrm{E}-11$ | . $2004 \mathrm{E}-11$ | . $1849 \mathrm{E}-11$ | . $3703 \mathrm{E}-12$ | .1849E-11 |
| 1965. | . 5010E-11 | . $3051 \mathrm{E}-11$ | . 1654E-11 | . $1525 \mathrm{E}-11$ | . $3056 \mathrm{E}-12$ | . $1525 \mathrm{E}-11$ |
| 1966. | . $3580 \mathrm{E}-11$ | $.2180 \mathrm{E}-11$ | .1182E-11 | . $1090 \mathrm{E}-11$ | . $2184 \mathrm{E}-12$ | . $1090 \mathrm{E}-11$ |
| 1967. | . $2650 \mathrm{E}-11$ | . $1614 \mathrm{E}-11$ | . $8745 \mathrm{E}-12$ | . $8068 \mathrm{E}-12$ | . $1616 \mathrm{E}-12$ | -6068E-12 |
| 1968. | . $2013 \mathrm{E}-11$ | . 1226E-11 | . $6645 \mathrm{E}-12$ | .6130E-12 | . 1228E-12 | .6130E-12 |
| 1969. | $.1711 \mathrm{E}-11$ | . $1042 \mathrm{E}-11$ | . $5649 \mathrm{E}-12$ | .5211E-12 | . $1044 \mathrm{E}-12$ | . 5211E-12 |
| , 970. | .1601E-11 | . $974 \mathrm{BE}-12$ | . $5284 \mathrm{E}-12$ | . $4874 \mathrm{E}-12$ | . $9763 \mathrm{E}-13$ | . $4874 \mathrm{E}-12$ |
| 1971. | . $1482 \mathrm{E}-11$ | . $9024 \mathrm{E}-12$ | . $4891 \mathrm{E}-12$ | . $4512 \mathrm{E}-12$ | $.9038 \mathrm{E}-13$ | . $4512 \mathrm{E}-12$ |
| 1972. | . $1158 \mathrm{E}-11$ | . $7053 \mathrm{E}-12$ | . $3823 \mathrm{E}-12$ | . $3527 \mathrm{E}-12$ | . $7064 \mathrm{E}-13$ | . $3527 \mathrm{E}-12$ |
| 1973. | . $9329 \mathrm{E}-12$ | . $5681 \mathrm{E}-12$ | - 3079E-12 | . $2841 \mathrm{E}-12$ | . $5690 \mathrm{E}-13$ | . $2841 \mathrm{E}-12$ |
| 1974. | . $9388 \mathrm{E}-12$ | . $5717 \mathrm{E}-12$ | - $3099 \mathrm{E}-12$ | - $2858 \mathrm{E}-12$ | . $5726 \mathrm{E}-13$ | . $2858 \mathrm{E}-12$ |
| 1975. | .8822E-12 | . $5372 \mathrm{E}-12$ | . $2912 \mathrm{E}-12$ | . $2686 \mathrm{E}-12$ | $.5380 \mathrm{E}-13$ | . 2686 E-12 |
| 1976. | . $7461 \mathrm{E}-12$ | . $4544 \mathrm{E}-12$ | . $2463 \mathrm{E}-12$ | . $2272 \mathrm{E}-12$ | . $4550 \mathrm{E}-13$ | .2272E-12 |
| 1977. | $.6887 \mathrm{E}-12$ | . $4194 \mathrm{E}-12$ | . $2273 \mathrm{E}-12$ | . 2097E-12 | . $4200 \mathrm{E}-13$ | . 2097E-12 |



| ................. CONCENTRATION ON THE SOLIDS.......................... <br> I CURIES/GRAMOF SOLID, ORGANIC--INORGANIC |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1973. | $\begin{array}{r} .0200 \\ .2552 E-12 \end{array}$ | METERS $.2552 E-12$ | $\begin{array}{r} .0225 \\ .167 B E-12 \end{array}$ | METERS $.1678 \mathrm{E}-12$ | $\begin{array}{r} .0275 \\ .8601 E-13 \end{array}$ | $\begin{aligned} & 5 \text { METERS } \\ & \mathbf{3} \mathbf{8 6 0 1 E - 1 3} \end{aligned}$ |
| 1973. | $\begin{array}{r} .0325 \\ .3627 E-13 \end{array}$ | METERS $.3627 E-13$ | $\begin{array}{r} .0375 \\ .1315 E-13 \end{array}$ | $\begin{aligned} & \text { METERS } \\ & .1315 E-13 \end{aligned}$ | $\begin{array}{r} .0425 \\ .4215 \mathrm{E}-14 \end{array}$ | "ETERS <br> . $4215 \mathrm{E}-14$ |
| 1973. | $\begin{array}{r} .0475 \\ .1216 E-14 \end{array}$ | METERS <br> . 1215E-14 | $\begin{array}{r} .0525 \\ .3191 E-15 \end{array}$ | $\begin{aligned} & \text { METERS } \\ & .3191 E-15 \end{aligned}$ | $\begin{array}{r} .0575 \\ .768 i E-16 \end{array}$ | $\begin{aligned} & \text { METERS } \\ & .7681 E-16 \end{aligned}$ |
| 1973. | $\begin{array}{r} .0625 \\ .1705 E-16 \end{array}$ | METERS <br> . 1705E-16 | $\begin{array}{r} .0675 \\ .3510 E-17 \end{array}$ | METERS $.3510 E-17$ | $\begin{array}{r} .0725 \\ .6725 E-18 \end{array}$ | $\begin{aligned} & \text { METERS } \\ & .6725 E-18 \end{aligned}$ |
| 1973. | $\begin{array}{r} .0775 \\ .1205 E-18 \end{array}$ | METERS <br> . $1205 \mathrm{E}-18$ | $\begin{array}{r} .0825 \\ .2025 E-19 \end{array}$ | $\begin{aligned} & \text { METERS } \\ & .2025 E-19 \end{aligned}$ | $\begin{array}{r} .0875 \\ .3205 \mathrm{E}-20 \end{array}$ | $\begin{aligned} & \text { "ETERS } \\ & .3205 E-20 \end{aligned}$ |
| 1973. | $\begin{array}{r} .0925 \\ .4791 E-21 \end{array}$ | METERS $.4791 E-21$ | $\begin{array}{r} .0975 \\ .6784 E-22 \end{array}$ | METERS $.6784 E-22$ | $\begin{array}{r} .1025 \\ .9123 E-23 \end{array}$ | $\begin{aligned} & \text { METERS } \\ & .9123 E-23 \end{aligned}$ |
| 1973. | $\begin{array}{r} .1075 \\ .1168 E-23 \end{array}$ | $\begin{aligned} & \text { METERS } \\ & \cdot \quad 116 B E-23 \end{aligned}$ | $\begin{array}{r} .1125 \\ .1426 E-24 \end{array}$ | METERS $.1426 E-24$ | $\begin{array}{r} .1175 \\ .1679 E-25 \end{array}$ | $\begin{aligned} & \text { METERS } \\ & .1679 E-25 \end{aligned}$ |
| 1973. | $\begin{array}{r} .1250 \\ .9285 \mathrm{E}-27 \end{array}$ | METERS $.9285 \mathrm{E}-27$ | $\begin{array}{r} .1400 \\ .1931 E-28 \end{array}$ | METERS $.1931 E-28$ | $\begin{array}{r} .1700 \\ .2004 \mathrm{E}-30 \end{array}$ | $\begin{aligned} & \text { METERS } \\ & .2004 E-30 \end{aligned}$ |
| 1973. | $\begin{array}{r} .2300 \\ .1015 \mathrm{E}-32 \end{array}$ | METERS $.101 \text { SE- } 32$ | $\begin{array}{r} .3500 \\ .2478 E-35 \end{array}$ | METERS $.2478 \mathrm{E}-35$ | $\begin{array}{r} .5900 \\ .2847 \mathrm{E}-38 \end{array}$ | $\begin{aligned} & \text { METERS } \\ & .2847 E-38 \end{aligned}$ |
| 1973. | $\begin{array}{r} 1.0700 \\ .1555 E-41 \end{array}$ | METERS <br> .155うE-41 | $\begin{array}{r} 2.0300 \\ .4063 E-45 \end{array}$ | $\begin{aligned} & \text { METERS } \\ & .4063 E-45 \end{aligned}$ | $\begin{gathered} 3.9500 \\ .5099 E-49 \end{gathered}$ | METERS $.5099 E-49$ |
|  | 7.7900 | METERS |  |  |  |  |
| $\begin{array}{r} , 973 . \\ 09.30 .1 \end{array}$ | $\begin{aligned} & 3080 E-53 \\ & \text { ELP, } \end{aligned}$ | $\begin{array}{r} .3080 E-53 \\ 0.365 \mathrm{KLNS} . \end{array}$ |  |  |  |  |

Appendix B.--LISTING OF SED

```
C********************SEDIMENT/WATER COLUMN CONTAMINANTMODEL****************
C PURPOSE :
C THE PURPOSE OF THIS PROGRAM IS TO SIMULATETHECONCEN-
 TRATIONOF A CONTAMINANT IN THE SEDIMENTS AND OVERLYING
 HATER COLUMN OF A NELL-MIXED LAKE BASED ON USER SUPPLIED
 YEARLY LOADING RATES.
 ITS PRINCIPAL APPLICATION WOULDBETO PREDICT THE YEAR-
 TO-YEARAND STEADY-STATE RESPONSES OF THE WATER COLURN
 AND SEDIMENTS DUE TO CHANGES IN THE AMOUNT OF CONTAHINANT
 ANDIOR PARTICULATE HATTER ENTERING THE LAKE.
INPUT:
 REAL UNITI:
 CONTAHINAYT LOADING RATES :
 TX-YEAR CORRESPONDING TO LOAD
 REAL UNIT 3 :
 DATA POINTS FOR PLOTS :
 PLCDNCY - WATER COLUMN CONCENTRATION
 (P CI/CU M)
 DEPTH1-DEPTH(CM)
 PLCONCI-TOTAL SEDIMENT CONCENTRATION
 (MICROCI/CUM)
 DEPTH2-DEPTH(CM)
 PLCONC2-POREWATERCONCENTRATION
 (PCI/CUMOF P OREHATER)
 DEPTH3-DEPTH(CM)
 PLCONC3-SDLIDS CONCENTRATION
 (PCI/GMOF SOLID)
OUTPUT :
 REAL UNIT 6
 LAKE PARAMETERS
 CONTAMINANT PARAMETERS
 SOLIDS BUDGET RESULTS
 INITIAL CALCULATION RESULTS
 SEGMENT,SEGMENT DEPTH, ALPHA, BETA
 TINE STEP OFINTEGRATION
 MASS BALANCE RESULTS
 LOADING RATES
```

C SIMULATION RESULTS
C SIMULATION RESULTS
C PLOTTING :
C PLOTTING :
REAL UNIT 2
REAL UNIT 2
LOADING RATE VERSESTIME
LOADING RATE VERSESTIME
WATER COLUMN CONCENTRATION VERSES TIRE
WATER COLUMN CONCENTRATION VERSES TIRE
TOTAL SEDIMENT CONCENTRATION VERSES DEPTH
TOTAL SEDIMENT CONCENTRATION VERSES DEPTH
PORE HATER CONCENTRATION VERSES DEPTH
PORE HATER CONCENTRATION VERSES DEPTH
SOLIDS CONCENTRATION VERSES DEPTH
SOLIDS CONCENTRATION VERSES DEPTH
SUBROUTINES :
SUBROUTINES :
RMAX - CALCULATES MAXIMUM VALUE FROM ARRAY OF VALUES
RMAX - CALCULATES MAXIMUM VALUE FROM ARRAY OF VALUES
RMAX - CALCULATES MAXIMUM VALUE FROM ARRAY OF VALUES
ZSYSTM-SIMULTANEOUSLY SOLVES SET OF NON-LINEAREQUATIONS
ZSYSTM-SIMULTANEOUSLY SOLVES SET OF NON-LINEAREQUATIONS
ZSYSTM-SIMULTANEOUSLY SOLVES SET OF NON-LINEAREQUATIONS
(AVAILABLE INIMSLSOFTWARE)
(AVAILABLE INIMSLSOFTWARE)
(AVAILABLE INIMSLSOFTWARE)
FUNCTION SOLID - SUPPLIES ZSYSTM WITH SET OF NON-LINEAR
FUNCTION SOLID - SUPPLIES ZSYSTM WITH SET OF NON-LINEAR
FUNCTION SOLID - SUPPLIES ZSYSTM WITH SET OF NON-LINEAR
EQUATIONS
EQUATIONS
EQUATIONS
INTEGER PLOTYR
REALKDIW, KDOW,KDIM, KDOM,KRW,KRS,NYR,KDIP,KREM,INPUT, INIT, VIW, VOW
DIMENSION CTM(50,40),AL(40,40),TT(50)
DIMENSION $2 S(31)$, DCMDT(40), CM(40), CTW(50)
DIMENSION ALPHA $(40,40), \operatorname{BETA}(40,40)$
DIMENSION $\mathrm{Z}(40,40), V M(40)$, TIME $(50)$, WC(50)
DIMENSION CDW(50), CIW(50), COW(50), VOW(50), VIW(50), CPWM(50,40)
OIMENSION ZYY(40),CTMX(40), CPWMX(40), VOMX(40), VIMX(40)
DINENSION CMAX(2),CTWX(50), ZYYY(40),CMDK(50)
DIMENSION TX(50), TTX(50),WW(50), VOM(40,40), VIM(40,40)
DIMENSION PLTIME(10), PLCONCW(10), DEPTH1(9), DEPTH2(7), DEPTH3(17)
DIMENSION PLCONC1(9),PLCONC2(7),PLCONC3(17)
DIMENSION X(6), WA(33),PAR(16),IPAK(30)
EXTERNALSOLID
C
C SEGMENT LENGTHS(CM)
DATAZS/2.,20*.5,1.,2.,4.,8.,16.,32.,64.,128.,256./
C
C
C LAKE PARAMETERS--LAKEMICHIGAN
ZW=90.5
$A W=50000.0 E 6$
$A S=56000.0 E 6$
$Q=60$. 0 E 9
VI-.3*365.
vo-.15*365.
VR-0.0
$A M=30000.0 \mathrm{E} 6$
$Z 8=1 . / 100$.
$\mathrm{PHI}=.80$
RHOO $=1.27 E 6$
RHOI $=2.5$ E6
PSI=6.0E12
$W P=6 . O E 12$

```
 KREM=.001
 KDIP=.001
 PARA=.33333
 APD=10.
 C
 VTW=AW*ZW
 VTM=AM*ZS(1)/100.
C
C
C MODEL PARAMETERS
C NUMBER OF SEGMENTS (MULTIPLES OF TEN ARE BEST FOR OUTPUT)
 NS-30
C
C PRINT STEP
 TP-1.
C
C TIME STEP
 TC-. 005
C
C NUMBER OF YEARS OF SIMULATION
 N YR-25.
C
C YEAR AT TIRE ZERO
 TIME(1)=1953.
C
C
C CONTAMINANT PARAMETERS--PLUTONIUM
C DECAY RATES
 KRW=0.
 KRS=0.
C
C PARTITION COEFFICIENTS
 KDIW=5.0E5
 KDOW=5.0E5
 KDIM=2.0E4
 KDOM=2.0E4
C
C DIFFUSION COEFFICIENT
 EM=1.21E-5
 ES=EM*PHI**2
C
C VAPORIZATION RATE
 vv-0.0
C
C INITIAL CONCENTRATIONS
 CH=O.
 CTW(1)=CW
 DO 10 1 =1,NS
 CM(I)=0.
 CTM(1,I) = CM(I)
 10 CONTINUE
 CM(NS+1)=CM(NS)
C
C
C LOADING
 CONY-I.O
 DO 30I =1,99
 READ(1,1010)TX(I),NW(I)
 IF(EOF(1))40.20
 CONVERT FCI/CM**2/YRTOCI/YR
```

```
 2 0WH(I)=WH(I)*1.OE-15*AS*100**2/CONV
 30 CONTINUE
C INTERPOLATE FOR NO-LOAD YEARS
 40 TTX(1)=TX(1)
 WC(1)=WH(1)
 I=2
 NY-NYR
 DO 60 J=2,NY
 TTX(J)=TtX(J-1)+Tp
 IF(TYX(J).LE.TX(I))GO TO 50
 I=I +1
 50 WC(J)=WH(I-1)+(WW(I)-WW(I-1))/(TXX(I)-TX(I-I))*(TTX(J)-TX(I-1))
 60 CONTINUE
C
C CONVERSIONS
 ES=ES*60.*60.*24.*365./(100.*100.)
 KDIW=KDIW/1.0E6
 KDOW=KDOW/1.OEG
 KDIM=KDIM/1.0E6
 KDOM=KDOM/1.OEG
C
 DO 70I=1,NS
 ZS(I)=ZS(I)/100.
 70 CONTINUE
 ZS(NS+1)=ZS(NS)
C
C
C PRINT LAKE PARAMETERS
 WRITE(6,1020)Q,AS,AW,AM,ZW,VO,VI,VR,ZB,PSI,WP,KREM,KDIP,PARA,APD
C PRINT CONTAMINANT PARAMETERS
 HRITE(6,1030)KRW,KRS,KDOW,KDIW,KDOM,KDIM,ES,VV
 SOLIDS BUDGET
 PAR(1)=PSI &PAR(2)=0 SPAR(3)=VI SPAR(4)=AW
 PAR(5)=VR $PAR(5)=AM < $PAR(7)=RHOI $PAR(8)=PHI
 PAR(9)=APD
 $PAR(10)=RHOO
 $PAR(11)=WP
 PAR(13)=PARA $PAR(14)=KDIP $PAR(15)=KREM $PAR(16)=VTM
 SPAR(12)=VO
C
C ZSYSTM PARAMETERS
 EPS=1.0E-6
 NSIG=6
 ITMAX=10
 N-b
 X(1)-377100.
 X(2)=18790.
 X(3)=8.0186
 X(4)=1.0840
 X(51-.1703
 X(6)=.4647E-3
 CALLZSYSTM(SOLID,EPS,NSIG,N,X,ITMAX,WA,PAR,IER)
 POM=X(1)
 PIM=X(2)
 PTW=X(3)
 SIW=X(4)
 PHII=X(5)
```

$V B=X(6)$
C
C PRINT SOLIDS BUDGET RESULTS
WRITE(6, 1040 )PTH,POM, PIM,SIW, PHII, VB
C
PHIO=POM/(APD*RHOO)
SIM=RHOI \#PHII
SOM= RHOO $=$ PHIO
SOW=PARA/(1.+PARA+KDIP*SIW)*PTW/APD
FIW=KDIW*SIW/(1.+KDIW*SIW+KOOW*SOW)
FOW=KDOW*SOW/(1.+KDIW*SIW+KDOW*SOW)
FDW=(L. - FOW-FIW)
FPWM=1.0/(PHI +PHII*RHOI*KDIM+PHIO*RHOO*KDOM)
FDM $=$ PHI*FPWM
$F U M=K D O M * R H O O * P H I O /(P H I+K D I M * R H O I * P H I I+K O O M * R H O O * P H I O)$
FIM=KDIM*RHOI*PHII/(PHI +KDIM*RHOI*PHII +KDOM*RHOO*PHIO)
C
C
C INITIAL CALCULATIONS
C MID-SEGMENT LENGTHS
ZYY(1)=ZS(1)
ZYY(2)=ZS(1)+ZS(2)/2.
C ZYY(1)=ZS(1)BECAUSEISTSEGIS COMPLETELYMIXED DO $80 \mathrm{I}=3$, NS
ZYY(I) $=$ ZYY(I-1)+ZS(I-1)/2.+ZS(I)/2.
BOCONTINUE
C
CALCULATION OF VM, Z, ALPHAAND BETA
DO $150 \mathrm{I}=1$, NS
$\operatorname{VM}(I)=A M * Z S(I)$
ZYYY(I+1)*2YY(I)*100.
ZYYY(1)=0.
$Z(I, I+1)=(Z S(I)+Z S(I+1)) / 2$.
$A L(I, I+1)=Z S(I+1) /(Z S(I)+Z S(I+1))$
ALPHA(I,I +1$)=1.05-E S * F P W M /(Z(I, I+1) * V B)$
IF(ALPHAII,I+1).LE.1.0)G OTO120
ALPHA(I, $I+1)=1.0$
GO TO 140
120 IF(ALPHA(I,I+1).GT.AL(I,I+1))CD TO 130
ALPHA(I,I+I)=AL(I,I+I)
130 IF(ALPHA(I,I+1).GE.0.5)GOTO 140
ALPHA(I, $I+1)=0.5$
140 BETA(I,I+1)=1.-ALPHA(I,I+1)
150 CONTINUE
ALPHA(1,2) $=1.0$
BETA(1,2)=1.-ALPHA(1,2)
C

PRINT INITIAL CALCULATION RESULTS
WRITE(6,1050)SOW,SIW,SOM,SIM,FDW,FOW,FIW,FPWM,FDM,FOM,FIM,PHI,PHIO *, PHII
C
C
PRINT SEGMENTLENGTHS AND WEIGHTING FACTORS
NRITE16.10601
WRITE(6,1070)(I, ZS(I), ALPHA(I,I+1), BETA(I,I+1), I=1,NS)
C
C
C CALCULATION OF TIME STEP

```
 DO 170I=1,NS
 IT(I)=1./(2.*(ES*FPWM)/Z(I,I+1)**2*KRS-VB/Z(I,I+1)*(8ETA(I,I+1)-A
 - LPHA(I,I+1)I)
 IF(I.GT.II GO TO160
 TMIN=TT(1)
 160 IF(TMIN.LE.TT(I))GOTO 170
 TMIN=TT(I)
 170 CONTINUE
 TCC=TMIN
 NCC=TP/TCC
 NCC=NCC+1
 TCC=TP/NCC
 IF(TCC.GT.TC)GO TO180
 TC-TCC
C
C PRINT TIMESTEP OF INTEGRATION
 180 WRITE(6,1080)TC
C
C INITIALMASS
 CMT I-O.
 DO 190I=1,NS
 CMTI*CMTI*CM(I)*VM(I)
 190 CONTINUE
 INIT=CW*VTW+CMTI
C
 INPUT-O.
 OUTPUT-O.
 FLUSH-O.
 VAPOR-O.
 DECAY-O.
 SETTLE-O.
C P PRINT HEADING FOR BASS BALANCE RESULTS
 WRITE(6,1090)
C
C
 NP=NYR/TP+.000001
 NC=TP/TC+.000001
C
C
C
C START OFINTEGRATION
 DO 270J=1,NP
 DO 250K=1,NC
C
 IF(J.EO.l)GO TO ZOO
 TIME(J)=TIME(J-1)+TP
C
C
C HATERCOLUMN BALANCE
 200 CWLD*WC(J)
 CWFL=Q*CW*(-1.)
 CWVV=VV*AS*FDW*CH*(-1.)
 CWOS=VO*AW*FOW*CW*(-1.)
 CWIS*VI*AW*FIW*CW*(-1.)
 CWRE=VR*AM*CM(1)
 CWDB*ES*AM/((2B+ZS(1))/2.)*(PHI*FPWM*CM(1)-FDW*CW)
 CWOB=PHI*ES*AM/((ZB+ZS(1))/2.)#(FPWM*CM(1)-FDW*CW)
 CWDK=KRW*VTW*CW*(-1.I
 DCWDT=(CWLD+CWFL+CWVV CWOS+CWIS +CWRE CWDB +CWDK)/VTW
```

```
C
C
C MIXED SEDIMENT LAYER BALANCE
 CMOS=CHOS*(-1.)
 CMIS=CWIS*(-1.)
 CMRE=CWRE*(-1.)
 CMSL=VB*AM*(ALPHA(1,2)*CM(1)+BETA(1,2)*CM(2))*(-1.)
 CMOU=CWOB*(-1.)
 CMOB=PHI*ES*AM/Z(1,2)*(FPWM*CM(2)-FPWM*CM(1))
 CMDK(1)=KRS*VM(1)*CM(1)*(-1.)
 DCMDT(1)={CMOS+CMIS+CMRE+CMSL+CMDU+CMDB+CMDK(1))/VM(1)
C
C
C REMAINING SEDIMENT LAYERS BALANCE
 DO210I=2,NS
 CMSG=CMSL*(-1.)
 CMSL=VB*AM*(ALPMA(I,I+1)*CM(I)+BETA(I,I+1)*CM(I+1))*(-1.)
 CMDU=CMDB*(-1.)
 CMDB=PHI*ES&AM/Z(I,I+I)*FPWM*(CM(I+1)-CM(I))
 CMDK(I)=KRS*VM(I)*CM(I)*(-1.)
 DCMDT(I)=(CMSG+CMSL+CMDU+CMDB+CMDK(II)/VM(I)
 210 CONTINUE
C
C
C MASS BALANCE
C LOADING
 INPUT=INPUT+CWLD*IC
C
C LOSSES
 CDKI=0.
 D O 220I=1,NS
 COKI=CDKI+CMOK(I)
 220 CONTINUE
 OUTPUT=OUTPUT-(CWFL+CWVV+CWOK+CDKI CMSL) # TC
C
C
 FLUSH=FLUSH-CWFL*TC
 VAPOR=VAPOR-CWVV*IC
 DECAY=DECAY-(CWDK + CDKI) %TC
 SETTLE=SETTLE-CMS_ *TC
C
C
C
C INTEGRATION
 CW=CW+DCWDT*TC
 OO2 3 OI=1,NS
 CH(I)=CM(I)+OCMOT(I)*TC
 230 CONTINUE
C
C ACCUMULATION
 CMTI=0.
 DO 240I=1,NS
 CMTI=CMTI+CM(I)#VM(I)
 240 CONTINUE
 ACC=(CW*VTW+CMTI)-INIT
C
 250 CONTINUE
C
 CTW(J)=CW
 CDW(J)=FOW*CW
```

```
 COW(J)=FOW*CW
 CIH(J)=FIW*CW
 VOW(J)=COW(J)/SOW
 VIW(J)=CIW(J)/SIW
 CTHX(J)=CTW(J)/1.0E-12
 DO 260I=1,NS
 CTM(J,I)=CM(I)
 CPWM(J,I) =FPWM*CM(I)
 VOM(J,I)=FOM*CM(I)/(PHIO*RHOO)
 VIM(J,I)=FIM*CM(I)/(PHII*RHOI)
C
 IF(J.LT.NP)GO TO 260
C PLOTYR = YEAR THAT SEDIBENT RESULTS ARE TO BE PLOTTED
 PLOTYR-1973
 PLOTYR=PLOTYR-TIME(1)+1
 CTMX(I+1)=CTM(PLOTYR,I)/1.0E-6
 CPWMX(I+1)=CPWM(PLOTYR,I)/1.OE-12
 VOHX(I+1)=VOM(PLOTYR,I)/1.OE-12
 VIMX(I+1)=VIM(PLOTYR,I)/1.OE-12
 260 CONTINUE
 CTMX(1)=CTMX(2)
 CPWMX(1)=CPWMX(2)
 VOMX(1)=VOMX(2)
 VIMX(1)=VIMX(2)
C
C
 270 CONTINUE
C
C
C PRINT MASS BALANCE RESULTS
 OFF- INPUT-OUTPUT
 WRITE(G,1100)TIME(NP), INPUT,OUTPUT,DFF,ACC,FLUSH,VAPOR,DECAY,SETTL
 OE
C
C PRINT CONTAMINANT BUDGET RESULTS
C WATER COLUMN
 WRITE(6,1110)
 WRITE(6,1120)(TIME(J),WC(J),J=1,NP)
 WRITE(6,1130)
 WRITE(6,1140)(TIME(J),CTH(J),CDW(J),CIW(J),VIW(J),COW(J),VOW(J),J=
 * I,NP)
C
C TOTALSEDIMENT
 WRITE(6,1150)
 DO 290 K=1,NS,10
 M=K+9
 IF(M.LE.NS)GO TO280
 M=NS
 280 WRITE(6,1160)(ZYY(I),I=K,M)
 WRITE(6,1170)(TIME(J), (CTM(J,I),I=K,M),J=PLOTYR,PLOTYR)
 WRITE(6,1180)
 290 CONTINUE
C
C
C POREWATER
 WRITE(6,1190)
 DO }310\textrm{K}=1,NS,1
 M=K+9
```

IFIM.LE.NSIGO TO 300
$M=N S$
300 WRITE 6,1160 )(ZYY(I), I=K, M)
WRITE( 6,1170 ) (TIME(J), (CPWM(J,I), I = K, M J, J = PLOTYR, PLOTYR)
WRITE(6,1180)
310 CONTINUE
C
C
C
SOLIDS
WRITE(6,1200)
DO $330 \mathrm{~K}=1$, NS, 5
$M=K+4$
IF(M.LE.NSIGO TO 320
$\mathrm{M}=\mathrm{NS}$
320 WRITE 6,1210 )(ZYY(I), I =K, M)
WRITE(6,1220)(TIME(J), (VOM(J,I), VIM(J,I),I=K,M),J=PLOTYR, PLOTYR)
330 CONTINUE
C
C
C
C
C
C PLOT RESULTS
CALLRMAX(CTHX,NP,CHMAX)
CALLRMAX (WC,NP, CLMAX)
CALLRMAX(CTMX,NS, CMMAX)
CALLRMAX (CPWMX,NS, CPWMMAX)
CALLRMAX(VOMX,NS, VOMMAX)
CMAX (1) = VOMMAX
CALLRMAX(VIMX,NS, VIMMAX)
CMAX (2) =VIMMAX
CALL RMAX (CMAX, 2, CSMAX)
CSMAX=CSMAX/1.25
C
READ(3,1230) (PLTIME(I), PLCONCW(I),I $=1,9)$
READ(3,1230) (DEPTHI(I), PLCONCI(I),I=1,8)
REAO(3,1230) (DEPTH2(I), PLCONC2(I),I=1,6)
READ(3,1230) (DEPTH3(1), PLCONC3(1),I=1,16)

CALL ID("LANG",4)
CALL TEKTRN("AUTOHC=YES,BAUD=2400,BATCH,CENTER,TERM=4014,ENDS",100 *)
CALL BGNPL(1)
CALL NOBROR
CALL PHYSOR(1.0,1.0)
CALL TITLE("LOADINGs",-100,"TIME",4,"CURIES/YEARs",100,4.,4.1
CALL MESSAG("LAKE MICHIGAN--PLUTONIUMS", 100,3.0,5.5)
CALL XTICKS(2)
CALL XINTAX
CALL GRAF (1950., 10., 1980.,0.,"SCALE", CLMAX)
CALL FRAME
CALL CURVE(TIME,WC,NP,O)
CALL ENOGR(1)
CALL PHYSOR(6.0.1.0)
CALL TITLE("WATER COLUMN CONCs", 100,"TIME",4,"E-12 CURIES/CU MS", 1 *00,4.,4.)
CALLGRAF(1950.,10.,1980.,0., "SCALE",CWMAX)
CALL FRAME
CALLMARKER(Z)

```
 C ALL CURVE(PLTIME,PLCONCW,9,-1)
 CALL CURVE(TIME,CTWX,NP,O)
 CALLENDGR(2)
 CALLENDPL(0)
C
 CALLBGNPL(2)
 CALL NOBRDR
 CALLRESEY("XINTAX")
 CALLPAGE(8.5,13.0)
 CALL PHYSORI.6r1.251
 CALLTITLE("TOTALCONC",-10,"E-6 CURIES/CU Ms",100,"DEPTH (CM)$",1
 00,3.5,4.5J
 CALLMESSAG("LAKEMICHIGAN--PLUTONIUM 1973$",100,4.18,6.0)
 CALLGRAF(0.,"SCALE",CMMAX,10.,2.,0.)
 CALL FRARE
 C ALL CURYE (CTMX, IYYY,16,0)
 CALLENDGR(1)
 CALLPHYSOR(4.7.1.25)
 C A L LTITLEI"PORE HATER CONC",15,"E-12CURIES/CUMO FPWs",100,"N,
 *1,3.5,4.51
 CALLGRAF(0.,"SCALE",CPHMMAX,10.,2.,0.)
 CALLFRAME
 CALL CURVE (CPWMX, ZYYY,16,0)
 CALLENDGR(2)
 CALLPHYSOR(8.8.1.25)
 CALLTITLE\"SOLIDS CONC",11,"E-12 CURIES/GM OF SOLIDS",100,"N,1,3
 - .5.4.51
 CALL GRAF(0.,"SCALE",CSMAX,10.,2.,0.1
 CALL FRARE
 CALL LINESP(2.I
 CALL LINES(" ORGANICS",IPAK,I)
 CALL LINES("INORGANICS",IPAK,2)
 CALL LECLIN
 CALL CURVE(VOMX,IYYY,16,01
 CALL DASH
 CALL CURVE(VIMX,ZYYY,16,0)
 CALL RESET("OASH")
 CALL LEGEND(IPAK,2,1.5,.35)
 CALL SCLPIC(1.2)
 CALL MARKER(0)
 CALL CURVE(PLCONCI,DEPTHI,8,-1)
 CALL MARKERI2I
 CALL CURVE(PLCONC2,DEPTH2,6,-1)
 CALL SCLPIC(.5)
 CALL MARKER(3)
 CALL CURVE(PLCONC3,DEPTH3,16,-1)
 CALL ENDGR (3)
 CALL ENDPL(0)
 CALL DONEPL
 999 STOP
C FORMAT STATERENTS
 1010 FORMAT(2F10.3)
 1020 FORMAT("1",///"LAKE PARARETERS-LAKEMICHIGAN....."//5X,00IC
 *U M/YR) =",E13.4/5X,"AS(SOR I =",E15.4/5X,"AW (SOM)=",E15.4/5X,
 *"AM(SOH I =",E15.4/5X,"ZW (M) =",F15.3/5X,"VO (M/YR) m",F12.3/5X,
 *NVI (M/YR)=",F12.3/5X,"VR (M/YR) =",F12.3/5X,"ZB (M) =",F15.3/5X,
 *"PSI (G/YR) =",E14.4/5X,"WP (MG P/YR) =",E12.4/5X,"KREM (/YR) =",F
 * 10.4/5X,"KDIP (CU M/G)=",F7.4/5X,MPARA =n,F17.4,/5X,"APD (MP P/G)
 **",F8.2%/1
```

```
10 3 O FORMAT("ON,"CONTAMINANTPARAMETERS-PLUTONIUM......"//5X, "KRW
 #(/YR)=",F15.3/5X,"KRS (/YR) =",F15.3/5X,"KDOH (CU M/G) =",F11.3/5
 X,"KDIU(CUM/G) =n,F11.3/5X,"KDOM (CU M/G) =n,F11.3/5X,"KDIM (CU
 *R/C) =",F11.3/5X,"ES (SQM/YR)=N,F13.4/5X,"VV (M/YR)=",F16.4///)
1040FORMAT\"SOLIDS BUDGET......."//5X, "PTM(MGP/CU H)=",F
 *8.4/5X,"POM (MG P/CU M) =',E12.4/5X,"PIM (MGP/CUM)=",E12.4/5X,"
 *SIN (G/CU M) =",F11.4/5X,"PHII =",F19.4/5X,"VB (M/YR) =",E18.4///)
1050FORMAT(/NIINITIAL CALCULATIONS......"*//5X,"SOW(G/CUM)=
 *N,F15.4/5X,"SIW(G/CUN J =",F15.4/5X,"PHIO*RHOO (G/CU M) =",El3.4/
 *5X,"PHII*RHOI (G/CU HI = = E13.4/5X,"FDH=",E19.4/5X,"FOW =",E19.4/
 - 5x+"FIn =',E19.4/5X,"FPWM =",E18.4/5X,"FDM =",E19.4/5X,"FON =",E19
 - .4/5X+"FIR =",E19.4/5X,"PHI =",F15.4/5X,"PHIO =",F14.4/5X,"PHII ="N
 *,F14.4///)
1060 FORMAT(//6X,"SEGMENT",6X,"SEGMENT DEPTH",3X,"ALPHAII,I +1)",4X,"8ET
 *A(I,I+1)"//)
1070 FORMAT(7X,13,7X,F10.3,11X,F6.4,9X,F6.4)
1080FORMAT(///5X,"THE TIRE STEP OF INTEGRATION (YEARS)=",F5.3//)
1090 FORMAT("O",///36X,"...........MASS BALANCE RESULTS (CURIES)......","
 *....."//3X,"TIME",7X,"INPUT",8X,"OUTPUT",7X,"DIFF",9X,"ACCUM",16X,
 #"FLUSH",8X,"VAPOR",8X,"DECAY",8X,"SETTLE"/)
1100 FORMAT(2X,F5.0,4F13.4,8X,4F13.4)
1110 FORMAT("1",////9X,"..............LOADING(CURIES/YEAR)........","..
 *."//22X,"TIME", 12X,"LOAD"/)
1120 FORMAT(21X,F5.0,9X,F7.2)
1130FORMAT\"!",////35x,".................CONCENTRATION IN THE WATER m,
 #"COLUMN"///23X,"TIME",11X,"TOTAL",9X,"DISS",10X,"
 *INORG",7X,"INORG",IOX,"ORG",9X,"ORG"/37X,"CI/CU M",7X,"CI/CU M",7X
 *,"CI/CU M",6X,"CI/GM",8X,"CI/CU M",6X,"CI/GM"/)
1140 FORMAT(22X,F5.0,8X,E10.4,4X,E10.4,4X,E10.4,2X,E10.4,4X,E10.4,2X,E1
 *0.4)
```



```
 * T H E SEDIMENT(CURIES/CUMETER)...........................//)
1160 FORMAT(6X,10F12.4/)
1170 FORMAT(1X,F5.0,2X,10E12.4)
1180 FORMAT("O")
1190 FORMAT("I",///20X,"..................CONCENTRATION IN THE PORE","
 - UATER(CURIES/CU METER OF PORE WATER)....................."//)
1200FORMAT("1",///20X,"..................CONCENTRATION ON THE ","SOLID
 - S(CURIES/GRAMOFSJLID)...................."/55X,"(ORGANIC--INORGAN
 *ICJ"/1
1210 FORMAT(///12X,F7.4," METERS",4(10X,F7.4," METERS")/)
1220 FORMAT(F6.0,2X,2E11.4,2X,2E11.4,2X,2E11,4,2X,2E11.4,2X,2E11.4)
1230 FORMAT(2F7.1)
 END
```

    FUNCTIONSOLID(X,K,PAR)
    DIMENSION X(6),PAR(16)
    GO TO (10,20,30,40,50,60),K
    C
10 SOLID=PAR(1)-PAR(2)*X(4)-PAR(3)*PAR(4)*X(4)*PAR(5)*PAR(6)*X(5)*PAR
- 17J
RETURN
2 O SOLID=PAR(3)*PAR(4)*X(4)-(PAR(5)*X(6))*PAR(6)*X(5)*PAR(7)
RETURN
30 SOLID=PAR(B)+X(5)+X(1)/(PAR(9)*PAR(10))-1.
RETURN
4 OSOLID=PAR(11)-PAR(2)*X(3)-PAR(12)*PAR(13)/(1.*PAR(13)*PAR(14)*X(4)
*)*PAR(4)*X(3)-PAR(3)*PAR(14)*X(4)/(1.*PAR(13) +PAR(14)*X(4))*PAR(4)
** X(3) +PAR(5)*PAR(6) * (X(1)+X(2))
RETURN
50 SOLID=PAR(12)*PAR(13)/(1. +PAR(13) +PAR(14)*X(4))*PAR(4)*X(3)-(PAR(5
I+X|6JI+PAR|6I*XI1J-PAR|I5J*PAR|| J*XIIJ
RETURN
60 SOLID=PAR(3)*PAR(14)*X(4)/(1. +PAR(13)+PAR(14)*X(4))*PAR(4)*X(3)-(P
*AR(5)+X(6))*PAR(6)*X(2)+PAR(15)*PAR(16)*X(1)
RETURN
END
C
C
SUBROUTINE RMAX(ARRAY,NNN, AMAX)
DIMENSION ARRAY(70)
AMAX=ARRAY(1)
O O 10I=2,NNN
IF(AMAX.GT.ARRAY(I))GO TO 10
AHAX=ARRAY(I)
10 CONTINUE
AMAX=AMAX*1.25
RETURN
END

```
```


[^0]:    *GLERL Contribution No. 325.

[^1]:    *For simplicity, the term "dry weight" will be dropped, and henceforth the term gram will stand for "grams dry weight" unless otherwise noted. **

    Keep in mind that not all contaminants are measured in curies (e.g., PCB's are measured in mass units, such as $\mu \mathrm{g}$ ).

[^2]:    ${ }^{*}$ It will be shown in the following section that $c_{p w, m}=F_{p w, m} c_{t, m}$. **It will also be shown that the sum of the three resuspension terms equals $v_{r} A_{m} c_{t, m}$.

[^3]:    ${ }^{*}$ It will be shown in the following section that $c_{p w, 2}=F_{p w, 2} c_{t, 2}$.

[^4]:    *The authors used one of the IMSL packages (subroutine ZSYSTM) available at NOAA, Great Lakes Environmental Research Laboratory.

[^5]:    *See figure 4 (left).

